

Neutron Decay Probes of the Standard Model

Frank Gonzalez

Oak Ridge National Laboratory, Physics Division

University of Tennessee Physics Colloquium February 26, 2024

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Table of Contents

- 1) Intro + Measuring V_{ud}
- 2) Measuring τ_n
 - UCNT
- 3) Measuring λ
 - Nab

2

Particle Physics: The Standard Model

- Standard Model:
 - Universe made of quarks, leptons
 - Interaction carried by gauge bosons
 - Can form composite particles
 - Incredibly precise predictive power!
- Does not explain everything!
 - Gravity
 - Dark Matter
 - We're here!
 - More matter than antimatter
 - Needs CP, B-number violation
 - Fine-tuning problems?
 - Left-handed Weak Interaction

New

Particles?

New

Interactions?

The Weak Interaction and Neutron Decay

• Neutron β -decay:

🛣 OAK RIDGE

National Laboratory

- $n \rightarrow p^+ + e^- + \overline{\nu_e}$
- Transition between $d \rightarrow u$ quarks
- Precision measurements of neutron decay can probe:
 - Formation of Elements (Big Bang Nucleosynthesis)
 - Understanding the Weak Interaction (CKM quark-mixing Matrix):

 $\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{th} \end{pmatrix}$

р

udu

udd

Experimental Probes of CKM Unitarity (V_{ud} and V_{us})

- Unitarity implies:
 - $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \Delta_{BSM}$
 - Same for all other rows/columns
 - $\bullet \quad \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$
- Measurements of V_{ud} :
 - Most precise from "Superallowed" $0^+ \rightarrow 0^+$ decays
 - Uncertainties due to radiative and nuclear structure corrections ($0^+ \rightarrow 0^+$, Mirrors)
- Measurements of V_{us} :
 - Most precise from Kaon decays
 - Tension between different decay channels

Beta-Decay: Enter the Neutron

• Neutron decay:

$$- n \rightarrow p^{+} + e^{-} + \overline{\nu_{e}}$$

- $|V_{ud}|^{2} = \frac{5099.3 \text{ s}}{\tau_{n} (1+3 \lambda^{2})(1+\Delta_{R})}$

- Experimentally Determine:
 - τ_n : Neutron Lifetime
 - $\lambda = g_A / g_V$: Ratio of coupling constants
- Theoretically Easier:

CAK RIDGE National Laboratory

- No nuclear structure corrections!
- Inner radiative correction Δ_R
- To compete with $0^+ \rightarrow 0^+$ measurements:
 - $\Delta \tau_n / \tau_n < 3 \times 10^{-4}$ (or $\Delta \tau_n < 0.3$ s)
 - $\Delta \lambda / \lambda < 1 \times 10^{-3}$ (or $\Delta \lambda < 1 \times 10^{-3}$)

Data from:

Workman, R. L. et al, Particle Data Group (2022)

Beta-Decay: What's Going On?

• Neutron decay:

$$- n \rightarrow p^{+} + e^{-} + \overline{\nu_{e}}$$

- $|V_{ud}|^{2} = \frac{5099.3 \text{ s}}{\tau_{n} (1+3 \lambda^{2})(1+\Delta_{R})}$

- Experimentally Determine:
 - τ_n : Neutron Lifetime
 - $\lambda = g_A / g_V$: Ratio of coupling constants
- Theoretically Easier:
 - No nuclear structure corrections!
 - Inner radiative correction Δ_R
- To compete with $0^+ \rightarrow 0^+$ measurements:
 - $\Delta \tau_n / \tau_n < 3 \times 10^{-4}$ (or $\Delta \tau_n < 0.3$ s)
 - $\Delta \lambda / \lambda < 1 \times 10^{-3}$ (or $\Delta \lambda < 1 \times 10^{-3}$)

Tension between different methods of determining τ_n , λ !

Data from:

Workman, R. L. et al, Particle Data Group (2022)

CAK RIDGE

How to Measure a Lifetime? Count the Dead or Count the Living

- "Beam experiment":
 - Counting the dead decay products

• Systematics:

Oak Ridge

National Laboratory

- Absolute measurements of p^+ and n rates
- Need to calibrate two detectors

- "Bottle experiment":
 - Counting the living neutrons
 - $Y(t) = Y_0 e^{-t / \tau_{bottle}}$

- Systematics:
 - Relative measurements of rates
 - Unaccounted for sources of loss give a lower lifetime!

How to Measure a Lifetime? Count the Dead or Count the Living

CAK RIDGE National Laboratory

Measuring τ_n : Beam Experiments

Measuring τ_n : Bottle Experiments

- Gravitrap:
 - $-\tau_n = 878.5 \pm 0.7_{stat} \pm 0.3_{sys}$ (2005)
 900
 - $\tau_n = 881.5 \pm 0.7_{stat} \pm 0.6_{sys}$ (2018)
 - Counting n after holding in wariable size material bottle

<u>Serebrov et al., PRC 97, 055503 (2018)</u>

- Space!
 - $-\tau_n = 883 \pm 17$
 - Counting n produced by cosmic rays hitting the moon or planetary atmospheres

2008

2011

Year of Publication

2014

2017

2020

2005

2002

How Do You Make a Neutron Bottle? Ultracold Neutrons!

- Gravitational force
 - $E = m_n g h$
 - About 100 neV/m

Nuclear force

$$- V_f = \frac{2\pi\hbar^2 \langle b_c \rangle}{m_n}$$
$$- \text{Up to 350 neV}$$

g

 Magnetic Force $- \vec{F} = \overrightarrow{\mu_n} \cdot (\nabla \vec{B})$ - About 60 neV/T Low field seekers

Measuring τ_n : The UCNT Experiment

- World's most precise measurement of the neutron lifetime
 - Traps Ultracold Neutrons with magnetic fields (and gravity!)
 - Minimizes material interactions
- Two precision results:
 - Data taken 2016, published 2018:
 - $\tau_n = 877.7 \pm 0.7$ (stat.) $^{+0.4}_{-0.2}$ (sys.) s
 - Pattie Jr., R. W. et al, Science 360, 627 (2018)
 - Data taken 2017-2018, published 2021:
 - $\tau_n = 877.75 \pm 0.28$ (stat.) $^{+0.22}_{-0.16}$ (sys.) s
 - Gonzalez, F. M. et al, Phys. Rev. Lett. 127, 162501 (2021)

What does it look like in real life?

Student for scale

UCN Area at Los Alamos

How to find a Bottle-Type Lifetime

Clean Hold Background • For each run calculate "Normalized Yields" (Y_i) Average Run Dagger Counts PMT : - Fill trap, and determine neutrons in trap $f(M_i)$ PMT 2 Fill Detect 10^{4} Coinc Clean (remove) untrappable neutrons Hold for variable (20 s < t_i < 5000 s) 103 Detect number of neutrons remaining (D_i) Rate (Hz.) 10² - Subtract Background counts (B_i) 10 100 500 100 200 300 400 600 Time (s)

3-Step Unloads, using $E = m_n gh$

Neutron losses (or changes in detector efficiency) would have an energy dependence

Finding the Lifetime: $Y(t_i) = Y_i e^{-t_i / \tau_{meas}}$

Single Holding Time Yield

17

UCNT+: Improving Statistics

- New "Elevator" Loading Mechanism to maximize statistics
 - Uses existing trap!
 - Anticipate $10 \times \text{counts}$ over loading from bottom UCN

18

UCNT+ Elevator In Action

19

Near Future Improvements

- Developing new detectors to count UCN faster and mitigate Rate Dependent Effects
 - Faster scintillator (LYSO, plastic)
 - Segmented detector
- Higher Statistics due to improved
 loading
 - Elevator Under Construction Now!
- Bring UCNT+ to a lifetime sensitivity of $\Delta \tau_n < 0.15$ s: $\Delta \tau_n / \tau_n = 1 \times 10^{-4}$

The UCNT Collaboration

Argonne National Laboratory N. B. Callahan

California Institute of Technology M. Blatnik, B. Filippone, E. M. Fries, K. P. Hickerson, S. Slutsky, V. Su, X. Sun, C. Swank, W. Wei

DePauw University

A. Komives

East Tennessee State University R. W. Pattie, Jr.

Indiana University/CEEM

L. Blokland, M. Dawid, W. Fox, D. J. Salvat, W. M. Snow J. Vanderwerp, G. Visser

Institute Laue-Langevin

P. Geltenbort

Joint Institute for Nuclear Research E. I. Sharapov

Los Alamos National Laboratory

S. M. Clayton (co-spokesperson), S. A. Currie, M. A. Hoffbauer, T. M. Ito, M. Makela, C. L. Morris, C. O'Shaughnessy, Z. Tang, W. Uhrich, P. L. Walstrom, Z. Wang

North Carolina State University T. Bailey, J. H. Choi, C. Cude-Woods, E.B. Dees, L. Hayen, R. Musedinovic, A. R. Young, B. A. Zeck

Oak Ridge National Laboratory L. J. Broussard, <mark>F. Gonzalez</mark>, J. Ramsey, A. Saunders

Tennessee Technological University R. Colon, D. Dinger, J. Ginder, A. T. Holley (co-spokesperson), M. Kemp, C. Swindell

> University of Illinois Urbana-Champaign C.-Y. Liu

Back to Neutron Decay

• Recall:

22

National Laboratory

- $n \to p^{+} + e^{-} + \overline{\nu_{e}}$ - $|V_{ud}|^{2} = \frac{5099.3 \text{ s}}{\tau_{n} (1+3 \lambda^{2})(1+\Delta_{R})}$
- To compete with $0^+ \rightarrow 0^+$ measurements in finding V_{ud} :
 - $\Delta \tau_n / \tau_n < 3 \times 10^{-4}$ (UCNT)
- Other observables in neutron decay:
 - Energies of p^+ , e^- , and $\overline{v_e}$
 - Momenta (direction) of p^+ , e^- , $\overline{v_e}$
- Use these to determine λ

Data from:
Workman, R. L. *et al*, Particle Data Group (2022)

How to Measure $\lambda = g_A/g_V$?

Decay rate of the neutron is proportional to:

 $\frac{d\Gamma^3}{dE_e d\Omega_e d\Omega_\nu} \sim p_e E_e E_\nu^2 (1+3\lambda^2) \left[1 + b \frac{m_e}{E_e} + a \frac{\overrightarrow{p_e} \cdot \overrightarrow{p_\nu}}{E_e E_\nu} + \langle \overrightarrow{\sigma_n} \rangle \cdot \left(\mathbf{A} \frac{\overrightarrow{p_e}}{E_e} + \mathbf{B} \frac{\overrightarrow{p_\nu}}{E_\nu} \right) + \cdots \right]$

• Correlation terms (asymmetries) relate to $\lambda = g_A/g_V$:

$$- a = \frac{1 - \lambda^2}{1 + 3\lambda^2} \qquad (\overrightarrow{p_e} \lor S. \overrightarrow{p_v})$$
$$- A = -2 \frac{\lambda^2 + \lambda}{1 + 3\lambda^2} \qquad (\overrightarrow{p_e} \lor S. \overrightarrow{\sigma_n})$$

- Fierz Interference term b couples to scalar (g_S) , tensor (g_T) currents in weak interaction
 - Non-zero g_S , g_T is new physics

Measuring λ : Recent Results

• PERKEO III (A):

CAK RIDGE

National Laboratory

24

- $\Delta \lambda / \lambda = 4.4 \times 10^{-4}$
- Polarized cold neutrons, measure e^- asymmetry

- aSPECT (*a*):
 - $\Delta \lambda / \lambda = 2.2 \times 10^{-3}$
 - Unpolarized cold n, measure p⁺ spectrum

Brown et al., PRC 97, 035505 (2018) Märkisch et al., PRL 122, 242501 (2019) Beck, et al., PRC 101, 055506 (2020)

beam dum

Grenobl

Kinematics of Unpolarized Neutron β -Decay

• For unpolarized neutrons:

- $d\Gamma^3 \propto 1 + a \frac{|\overrightarrow{p_e}| |\overrightarrow{p_{\nu}}|}{E_e E_{\nu}} \cos(\theta_{e\nu}) + b \frac{m_e}{E_e}$
- Relativistic kinematics: •
 - Relativistic Energy (for $i \in \{n, p^+, e^-, v\}$):
 - $E_i^2 = \overrightarrow{p_i}^2 + m_i^2$
 - Conservation of E:
 - $E_{\nu} = E_n (E_e + E_p)$
 - Conservation of \vec{p} :
 - $\cos(\theta_{ev}) = \frac{\overline{p_p}^2 \overline{p_e}^2 \overline{p_v}^2}{2|\overline{p_o}||\overline{p_v}|}$
- After some algebra, find $d\Gamma^3(E_e, p_p^2)$
 - If we can reconstruct E_e , p_p^2 for each decay, we can extract a, b...

UTK Colloquium (Gonzalez 2/26/2024)

National Laboratory

The Nab Experiment at Oak Ridge

World's largest cryogen-free superconducting magnet!

Reconstructing β -Decay Product Kinematics

- Use an asymmetric (7m long) spectrometer
- Beam of cold spallation neutrons

27

Reconstructing β -Decay Product Kinematics

- Use an asymmetric (7m long) spectrometer
- Beam of cold spallation neutrons
- Magnetic fields guide decay products
 - High-field decay region
 - Low-field time of flight region longitudinalizes momentum

Reconstructing β -Decay Product Kinematics

- Use an asymmetric (7m long) spectrometer
- Beam of cold spallation neutrons
- Magnetic fields guide decay products
 - High-field decay region
 - Low-field time of flight region longitudinalizes momentum
- Detect coincident p^+ and e^- at one of two silicon detectors
 - E_e measured in detector
 - $\left| \overrightarrow{p_p} \right|$ determined from proton time of flight

Extracting E_e with Silicon Detectors

- Segmented silicon detector (produced by Micron)
 - 127 hexagonal pixels for spatial resolution
 - Deadlayer ~100 nm
- Floats at 30 kV to see both p^+ and e^-

Detector Effects	Target Uncertainty	$(\Delta a / a)_{sys.}$
Electron Energy Calibration	$\Delta E_{e} < 0.2 \text{ keV}$	2×10^{-4}
Shape of Electron Energy Response	fraction of events in tail to 1%	4.4×10^{-4}
Proton Trigger Efficiency	$\epsilon_p < 100$ ppm / keV	3.4×10^{-4}
TOF Shift due to Detector/Electronics	$\Delta t_p < 0.3$ ns	3.9×10^{-4}
SUM		7.1×10^{-4}

Photo Credit: Micron Semiconductor, Inc.

Electron Response Function

- Need to understand $E_{e,meas}$ for each E_e to 1%
 - Fast + Linear electronics response
 - Electron bounce history

CAK RIDGE

National Laboratory

31

- Energy loss in detector due to Bremsstrahlung
- Simulate detector response and measure ¹⁰⁹Cd Energy Spectrum, One Detector

Simulated Electron Response

Manitoba II Proton Source

- Allows pixel-by-pixel mapping of detector
- Double focusing mass spectrometer
 - Penning ion gauge Hydrogen-Argon gas discharge source
 - Analyzer selects 30 kV p^+
 - Steerer guides p^+ onto detector

Calibrated Proton Spectrum

Determining p_p from Time of Flight

• Charged particle (p^+) moving through EM field:

$$- t_{p} = \frac{m_{p}}{p_{p}} \int_{Z_{0}}^{L} \frac{dz}{\sqrt{1 - \frac{B(z)}{B_{0}} \sin^{2}(\theta_{0}) + \frac{q(V(z) - V_{0})}{E_{0}}}}$$

- Smearing of response due to θ_0 , z_0
- High magnetic field rejects p^+ with:
 - $\cos(\theta_0) < \sqrt{1 B_0/B_f} \sim 0.7$

Fry et al. EPJ Web of Conferences 219, 04002 (2019)

CAK RIDGE National Laboratory

33

Characterization of Magnetic Field

- Need to understand B(z) to determine t_p
 - Have done measurements with Hall probe
 - Good agreement with simulation
- Analysis of magnetometry data ongoing

Magnetic Field	Target Uncertainty	$(\Delta a / a)_{sys.}$
Curvature at Pinch		
γ	$\Delta \gamma / \gamma = 2\%$	5.3×10^{-4}
Ratio $r_{B,TOF} =$		
B_{TOF}/B_f	$(\Delta r_{B,\text{TOF}})/r_{B,\text{TOF}} = 1\%$	2.2×10^{-4}
Ratio $r_{B,DV} = B_{DV}/B_f$	$(\Delta r_{B,DV})/r_{B,DV} = 1\%$	1.8×10^{-4}
SUM		6.0×10^{-4}

Target Uncertainties for *a* and *b*

•	Leading uncertainties:		
	_	Magnetic Field (only <mark>a</mark>)	
	_	Detector Effects (both a and b	
	-	Neutron Beam (only <mark>a</mark>)	
•	Go	al precision:	
	_	$\Delta a/a \sim (1 \times 10^{-3})_{tot.}$	
	_	$\Delta \lambda / \lambda \sim (4 \times 10^{-4})_{tot.}$	
	_	$\Delta b \sim (3 \times 10^{-3})_{tot.}$	
•	No	t statistically limited!	

Experimental Parameter	$(\Delta a / a)_{sys.}$
Magnetic Field	6.0×10^{-4}
Electric Potential Inhomogeneity	5.5×10^{-4}
Neutron Beam	3.3×10^{-4}
Adiabaticity of Proton Motion	1×10^{-4}
Detector Effects	7.1×10^{-4}
Electron TOF	$< 1 \times 10^{-4}$
Residual Gas	3.8×10^{-4}
TOF in Acceleration Region	3×10^{-4}
Background/Accidental	
Coincidences	$< 1 \times 10^{-4}$
Length of the TOF Region	N/A
SUM	1.2×10^{-3}

Troubleshooting Nab Magnet

- June 2022:
 - Upper coils of Magnet stop cooling at ~10K (should be ~4K)
 - Indicative of 20W heat load
- Leak? Detector touching bore? Compressor issue? Broken Coldhead?

- Tie rods caught in the wrong place!
 - Pulls the bore tube ~1.5mm down
- April 26, 2023:
 - Modified alignment piece, successfully ramped

Summer Commissioning + Data Taking

• First time with 2 detectors in working magnet with high voltage and neutrons!

- Normal Data Taking = 20%
- Systematics (+ Reduced Intensity) = 46.7%
- Background = 12.0%

é.Oak Ridge

National Laboratory

- Caveat: Electronics and Detector Issues
 - Electronics unstable
 - Parts of detector system unresponsive
 - Lower detector underdepleted

Detected Proton Rate

• Upgrade of detector system underway

Proton Response

• We see protons!

CAK RIDGE

National Laboratory

38

- Observed p^+ , e^- coincidence rate in our detectors ~50 n/s
- Proton peak energy lower than expected
 - Expected 20 keV for -30 kV detector voltage _
 - See peak at ~10 keV, lower than expected _

Rate

Simulated Proton Spectrum

Neutron Decays!

- First Full-Phasespace Reconstruction of Neutron Decay!
- Measured 1.6e7 coincidences above background
 - Corresponds to $(\Delta a/a)_{stat} \sim 1.1 \times 10^{-2}$
 - Detector response leads to significant (presently unquantified) systematic shifts

Preparations for Upcoming Beamtime

- Detector System Improvements
 - Upgrade of detector electronics
 - DAQ timing and stability improvements
- Detector characterizations
 - Studies of detector deadlayer
 - Linearity, temperature, and calibration studies
- Polarimetry studies at HFIR and SNS

Looking Forward: pNab

- Use the same apparatus to measure A, B
 - Add a neutron beam polarizer
 - Crossed supermirrors or ³He
 - Goals:
 - $\Delta A/A \le 10^{-3}$
 - $\Delta B/B \le 10^{-3}$
- Knowledge of uncertainties from Nab a and b:
 - Competitive Statistics
 - High detector energy/time resolution
 - Coincidence detection to suppress background
- Different systematics to other A, B measurements!
 *OAK RIDGE National Laboratory

The Nab Collaboration

42

National Laboratory

Summary

- 1) Interested in V_{ud} to resolve tensions in CKM unitarity
- 2) Most precise value of τ_n
 - UCNT+ coming online soon
- 3) Measuring λ
 - Nab commissioning now!
- Neutron soon competitive with other probes of $V_{ud}!$

UTK Colloquium (Gonzalez 2/26/2024)

National Laboratory